
Simulation of the Shale Oil System: from Molecular Fluid Dynamics to Reservoir Scale

Project ESD14089:

Numerical and Laboratory Investigations for Maximization of Production from Tight/Shale Oil Reservoirs: From Fundamental Studies to Technology Development and Evaluation

George Moridis, <u>Matthew Reagan</u>, Glenn Waychunas, Tim Kneafsey, Sharon Borglin, Jonathan Ajo-Franklin, Marco Voltolini Lawrence Berkeley National Laboratory



Simulation of the Shale Oil System: from Molecular Fluid Dynamics to Reservoir Scale

Project ESD14089:

Numerical and Laboratory Investigations for Maximization of Production from Tight/Shale Oil Reservoirs: From Fundamental Studies to Technology Development and Evaluation

George Moridis, <u>Matthew Reagan</u>, Glenn Waychunas, Tim Kneafsey, Sharon Borglin, Jonathan Ajo-Franklin, Marco Voltolini Lawrence Berkeley National Laboratory

Presentation Outline

- Programmatic slides
 - Goals, Benefits
 - Project Overview
- Technical Status
 - Task List and Updates
 - Code Development
 - Reservoir Simulation Studies
 - Molecular Simulation Studies
- Accomplishments to Date
- Appendix

Benefit to the Program

Goal: Address critical gaps of knowledge of the characterization, basic subsurface science, and stimulation strategies for shale oil resources to enable efficient resource recovery from fewer, and less environmentally impactful wells

Benefits:

- Increases in production (from a very low base, 5%)
- Identify and evaluate development improvement strategies
- Increases in reserve estimates
- Enhanced energy security

Project Overview: Goals and Objectives

- By using multi-scale laboratory investigations (nano- to core-scale) and numerical simulations (from molecular to field-scale) to:
- Identify and quantify the various mechanisms involved in hydrocarbon production from such tight systems,
- Describe the thermodynamic state and overall behavior of the various fluids in the nanometer-scale pores of these tight media,
- Propose new methods for low-viscosity liquids production from tight/shale reservoirs
- Investigate a wide range of such strategies, and identify the promising ones to quantitatively evaluate their expected performance

Success criteria

- Develop methods to compare a number of possible light tight oil production methods
- Identify and compare a number of possible light tight oil production methods

Technical Status: Phase I Milestones

MILESTONES						
TASK Title/Description	Planned Completion Date	Verification				
	(after project inception)	Method				
Task 2: Definition of metrics and	3 months (Budget Period #1)	Topical Report				
methodology for screening production						
strategies						
Task 3: Evaluation of enhanced liquids	7 months (Budget Period #1)	Topical Report				
recovery using displacement processes						
Task 4: Evaluation of enhanced liquids	9 months (Budget Period #1)	Topical Report				
recovery by means of viscosity reduction						
Task 5: Multi-scale laboratory studies of	17 months (Budget Period #2)	Topical Report				
system interactions						
Task 6: Molecular simulation analysis of	13 months (Budget Period #2)	Topical Report				
system interactions						
Task 7: Evaluation of enhanced liquids	18 months (Budget Period #2)	Topical Report				
recovery by means of increased						
reservoir stimulation, well design and						
well operation scheduling						
Task 8: Evaluation of combination	18 months (Budget Period #2)	Topical Report				
methods and of new strategies						

Technical Status: Phase I Milestones

MILESTONES								
TASK Title/Description	Planned Completion	Verification						
	(after project incept	tion)	Method					
Task 2: Definition of metrics and	3 months (Budget Perio	Topical Report						
methodology for screening production								
strategies								
Task 3: Evaluation of enhanc	erio	od #1)	Topical Report					
recovery using displacement Phase	I Complete							
Task 4: Evaluation of enhanc	erio	d #1)	Topical Report					
recovery by means of viscosit								
Task 5: Multi-scale laboratory suures or	1 / monuns (Buaget Peri	od #2)	Topical Report					
system interactions								
Task 6: Molecular simulation analysis of	13 months (Budget Peri	od #2)	Topical Report					
system interactions								
Task 7: Evaluation of enhanced liquids	18 months (Budget Peri	lod #2)	Topical Report					
recovery by means of increased								
reservoir stimulation, well design and								
well operation scheduling								
Task 8: Evaluation of combination	18 months (Budget Peri	od #2)	Topical Report					
methods and of new strategies								

Research Challenges & Approach

Numerous challenges: from fundamental to technology development

Approach

- Fundamental studies to technology development and evaluation (in parallel)
- Gain a deeper understanding of the dominant processes that control production from tight reservoirs
- Develop appropriate and effective production strategies.

Phase 1: 18 months, FY15-16 (completed) Phase 2: 24 months, FY17-18 (commencing)

Task 2: Metrics and Screening Methodology

Define the feasibility parameters, the specific objectives and metrics of the screening study, and the corresponding methodology for the evaluation of the various strategies to be investigated.

Status: COMPLETED

Successful strategy = increases by >50% in production/recovery over a 3-5 year period (or economic viability of well)

Not possible to use a single metric/approach. Two approaches in defining recovery:

- Based on resource-in-place and function of well spacing
- Based on resource-in-place and function of Reservoir Stimulated Volume (RSV)

Additional issues: Difficulties in describing drainage areas (heterogeneity), stage and cluster spacing

Task 3: Enhanced Recovery (Displacement)

Evaluation of enhanced recovery using displacement processes

Evaluate "standard" recovery strategies (via simulation) involving displacement processes, accounting for all known system interactions:

- Traditional continuous gas flooding (i.e. natural gas) using parallel horizontal wells (Phase I)
- Water-alternating-gas (WAG) flooding, and
- Huff-and-puff injection/production strategies using lean gas/rich gas in a traditional (single) horizontal well with multiple fractures (Phase II).

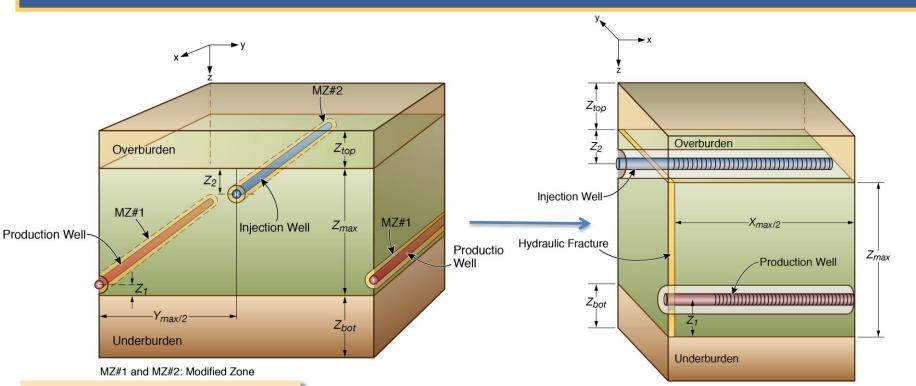
Additional numerical evaluations, as warranted by the results: updated thermophysical properties and PVT relationships

Task 3: Enhanced Recovery (Displacement)

Code Development: TOUGH+MultiComponentMultiPhase (T+MCMP)

- Builds on NETL-funded TOUGH+ codes (TOUGH+HYDRATE)
- Builds on RPSEA-funded codes for modeling shale properties (TOUGH+RealGasBrine)
- Conventional and tight/shale oil (heavy) simulations
- CO₂ enhanced oil recovery (CH₄, N₂)
- Shale-specific physics: sorption, non-Darcy effects, Knudson diffusion, Forchheimer flow, etc.
- CH₄- and CO₂-hydrate formation (adapted from NETL hydrates studies)
- "Fully compositional" model, fully non-isothermal
- Up to 3 oil components, H_2O , salt, and up to 18 gas components
- Minimum 1, maximum 23 equations/element
- A platform for all further numerical simulation

PROGRESS: Simulation Studies

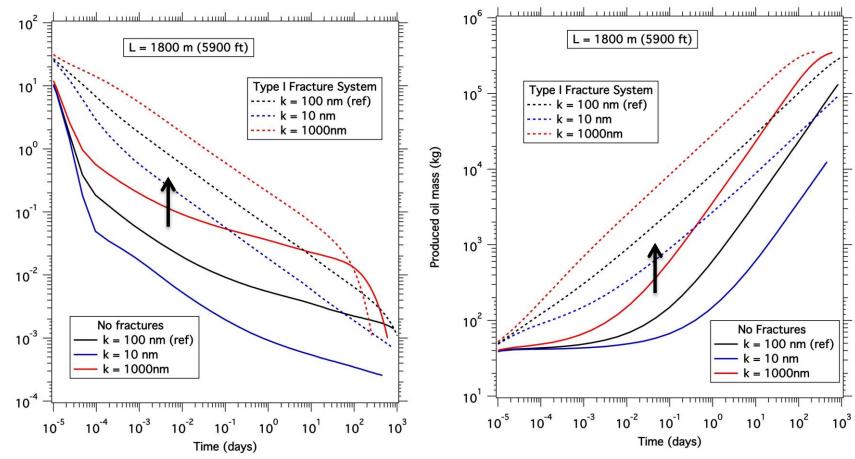

REFERENCE CASE: DEPRESSURIZATION

- TOUGH+MCMP
- Eagle Ford shale oil properties
- Reservoir depth: 6560 ft
- Constant bottomhole pressure (P = 1500 psia)
- Shale permeability: 10 nD, 100 nD, 1000 nD
- Shale porosity: 5%
- Fracture options:
 - No fractures,
 - Hydraulic fractures (Type I)
 - Type III/IV fracture systems (in progress for Phase II)
- Oil: C8-C14 (pseudo-component), full property description

Task 3: Shale Oil Production: Basic Stencil

REFERENCE CASE $Z_{max} = 10 \text{ m} (33 \text{ ft})$ $Y_{max}/2 = 10 \text{ m} (33 \text{ ft})$ $Z_1 = 1 \text{ m} (3.3 \text{ m})$ $Z_{top} = Z_{bot} = 0$

REFERENCE CASE $X_{max}/2 = 15 \text{ m} (49 \text{ ft})$ No injection well


Z₁, Z₂ : Optimization parameter

Extremely fine discretization: 370,000-740,000 elements

REFERENCE CASE

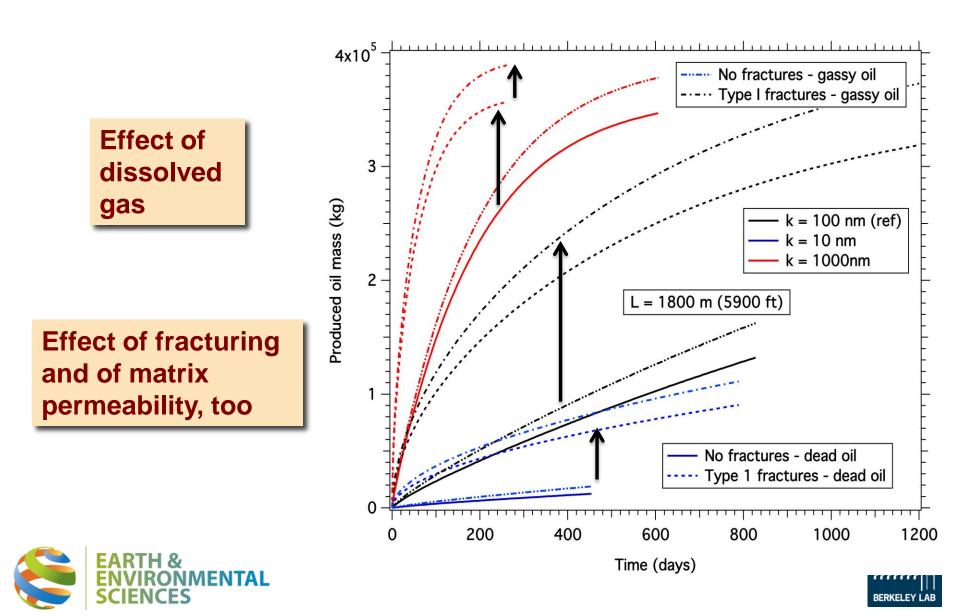
Oil Production (No injection)

Effect of fracturing and of matrix permeability

Task 4: Enhanced Recovery (Viscosity)

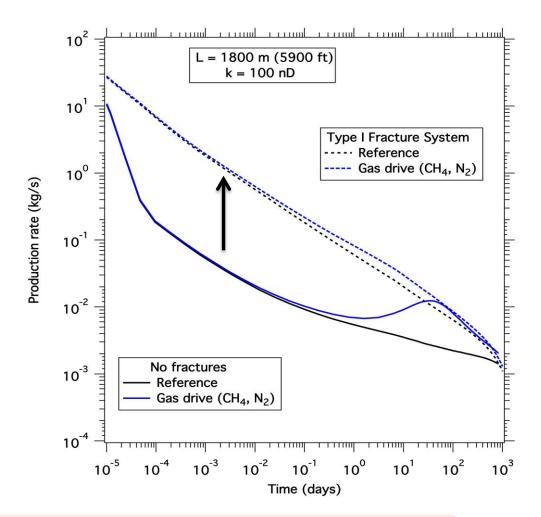
Evaluation of enhanced recovery by means of viscosity reduction

Evaluate numerically "standard" recovery strategies based on viscosity reduction:


- flooding using appropriate gases (e.g., CO₂, N₂, CH₄) and appropriate well configurations (viscosity reduction resulting from the gas dissolution)
- gas flooding due to phase changes (i.e. depressurization of gassy oil)
- thermal processes: viscosity reduction caused by heating

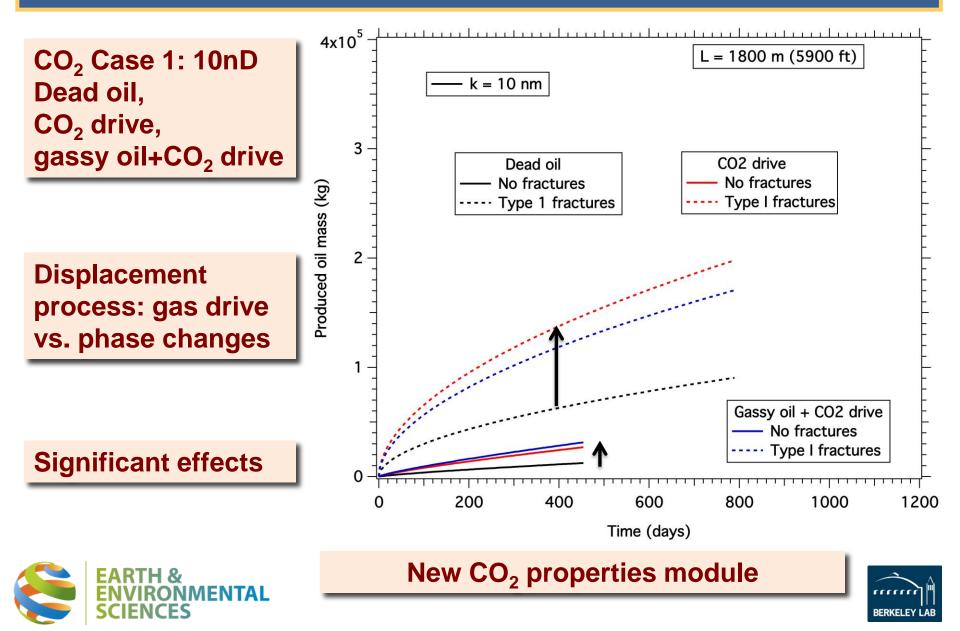
Sub-Task 4.1: Evaluation of viscosity-reduction-based strategies using (a) standard thermodynamics and (b) "nano-pore-adjusted" thermodynamics (in Task 6 – Phase II activity)

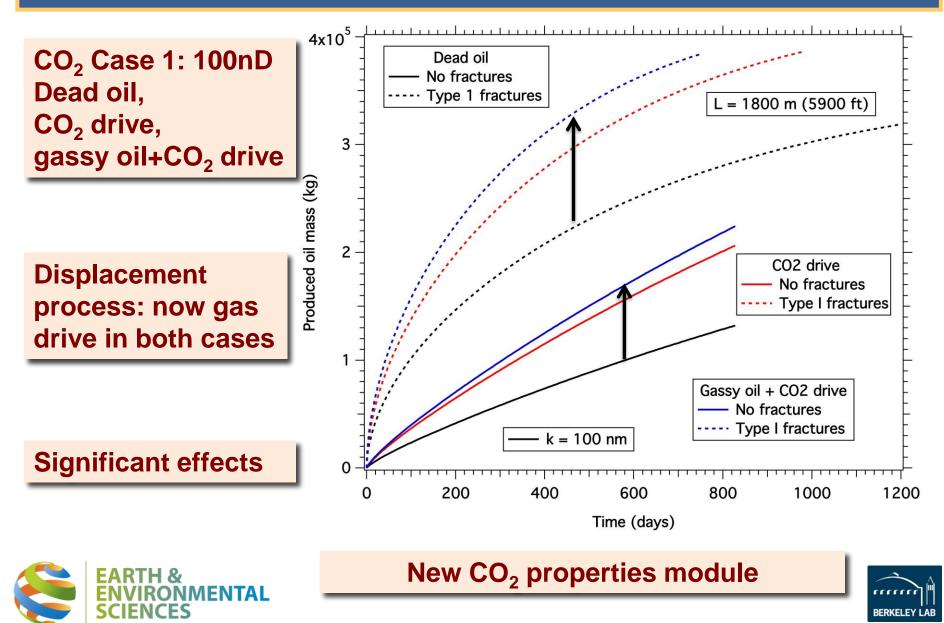
Sub-Task 4.2: Evaluation of new viscosity-reduction-based strategies suggested from molecular simulation studies (in Phase II– future activity)

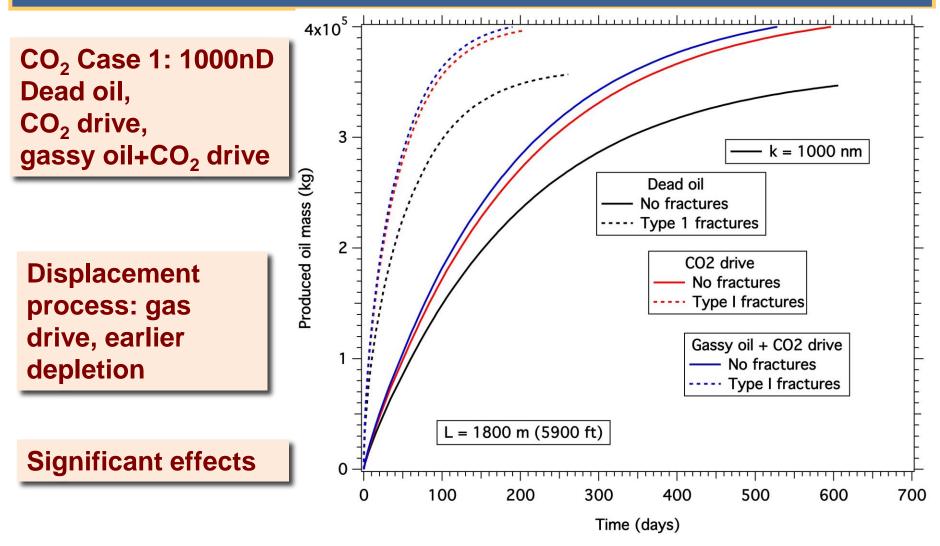


REFERENCE CASE

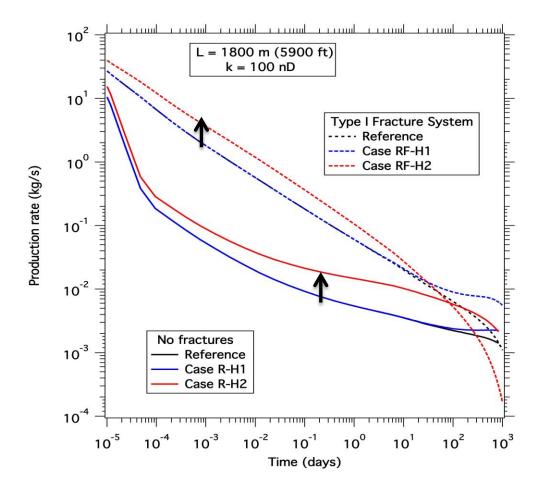
Displacement process: gas drive


No discernible difference between N₂ and CH₄ (latter not affecting the oil properties); re-evaluating basic equations




EARTH & EARTH & ENVIRONMENTAL SCIENCES

Need for supporting lab studies – inadequate physics



REFERENCE CASE

Thermal processes: H1: Heating at t = 0 H2: Heating at t = - 30 d

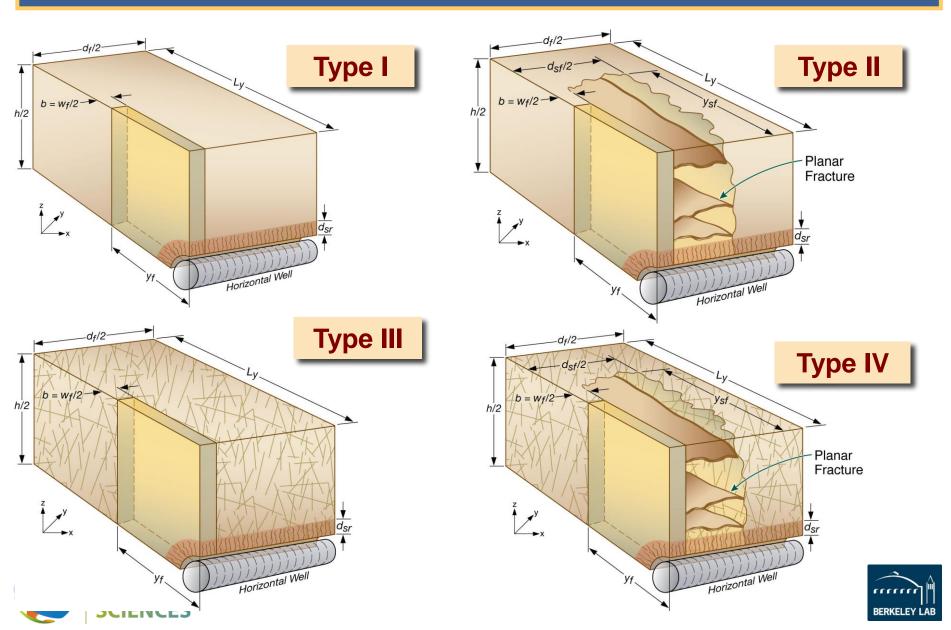
Sealed injection well, circulating steam

Timing is important: early heating effective, heating at time of production ineffective (study continues)

Task 7: Enhanced Recovery (Stimulation)

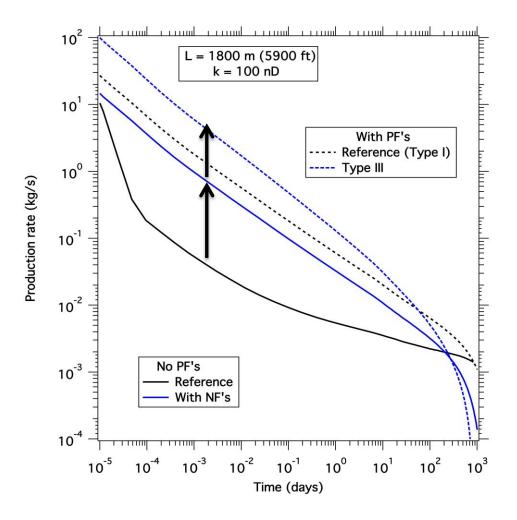
Evaluation of enhanced liquids recovery by means of increased reservoir stimulation, well design and well operation scheduling

Evaluate numerically the effects of enhanced reservoir stimulation (e.g., using 20-25 stimulated wells per section) on the recovery of liquids:


- Additional fracture formation (primary, secondary, natural)
- Evaluate the performance of improved/appropriate well designs
- Evaluate the effects of appropriate operation scheduling/sequencing

As in Tasks 3 and 4: Sensitivity analyses to determine the parameters and conditions controlling the liquids production in the various production strategies

Task 7: Types of fractured systems



Task 7: Shale Oil Production

Example: Effect of fracture types/distribution

Natural, primary, and/or secondary fractures

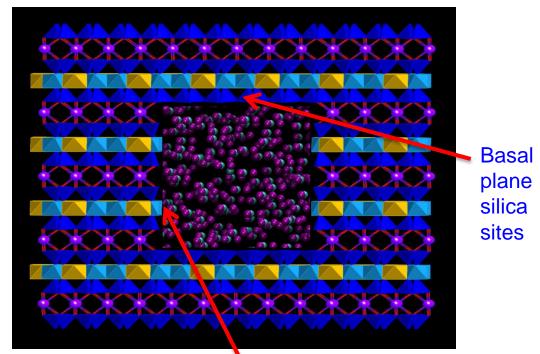
Significant impact!

Task 6: Molecular Fluid Dynamics

Molecular Fluid Dynamics-based simulation analysis of molecular system interactions

Study the expected fluid interactions and behavior in the most promising production scenarios identified in Tasks 3 and 4, as further focused by the laboratory results in Task 5.

- Grand Canonical Monte Carlo (GCMC) simulations at constant temperature, chemical potential of the confined fluid, and pore volume
- Classical Molecular Dynamics (CMD) simulations at constant density (pressure) and temperature
- Classical Molecular Dynamics (CMD) using reactive potentials to simulate chemical reactions (water-oil; oil-silicate; silicate-water) at interfaces
- Compare simulation results to nano-scale visualization studies
- Develop appropriate PVT relationships to incorporate into simulations
- Seek clues to enhanced recovery techniques

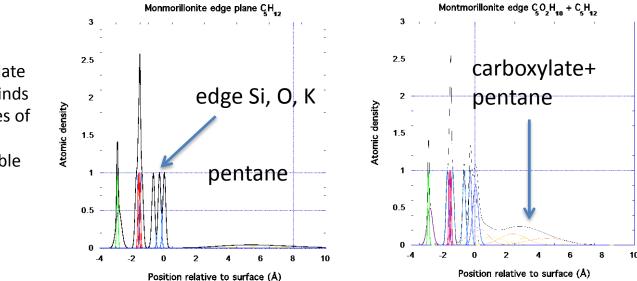


Task 6: Molecular Fluid Dynamics

Definition of domain/setup:

- Novel geometry exposes basal plane and edges to flow
- Novel use of reactive potentials
- Two methodologies for flow:
- (a) enhanced flow-directionoriented gravitational forces
- (b) fluid flow with constrained laminar velocity profile
- Use the LAMMPS program on NERSC supercomputers
- **OIL**: (a) C8 alkanes or (b) alkane with substituent species
- **Water**: H₂O with dissolved oils; clay pore solution inorganics
- **Pore structure:** from micro-CT studies/TEM when available

Edge sites with AI and Mg (oxide-like) chemistry


The initial clay tunnel/pore simulation cell. Central water molecules are red (H₂) and green (O₂). Flow direction into the figure. 12000 atoms; $4 \times 5 \times 5$ nm; pore 1.5 x 1.5 x 5 nm

Task 6: Molecular Fluid Dynamics

- Interactions of fluid with clay surfaces <u>depend on fluid composition</u>; carboxylics bind to oil and edges, <u>slowing near edge flow</u>
- Interactions of basal plane <u>much different</u> from edges in terms of reactivity

Addition of carboxylate to aqueous phase binds pentane to the edges of montmorillionite. Results not observable without reactive potentials.

Phase II work: Install flow to all simulations; enlarge system to 80K atoms (ca. 10 x 10 x 10 nm; pore to 3 x 3 x 10 nm)

- Study flow characteristics for various P,T solution compositions
- Test effect on flow of varied aqueous phase chemistry
- Evaluate possible extension to 10⁶ atoms using reactive potentials

Accomplishments to Date

(Phase I Simulation tasks)

- Development and testing of T+MCMP: shale oil/gas allpurpose simulator
- Evaluation of production enhancement via:
 - Gas injection
 - Viscosity reduction
 - Fracture extent/type
- First MD/MFD simulations of molecular/pore-scale surface phenomena
- Work on hold until Phase II commences

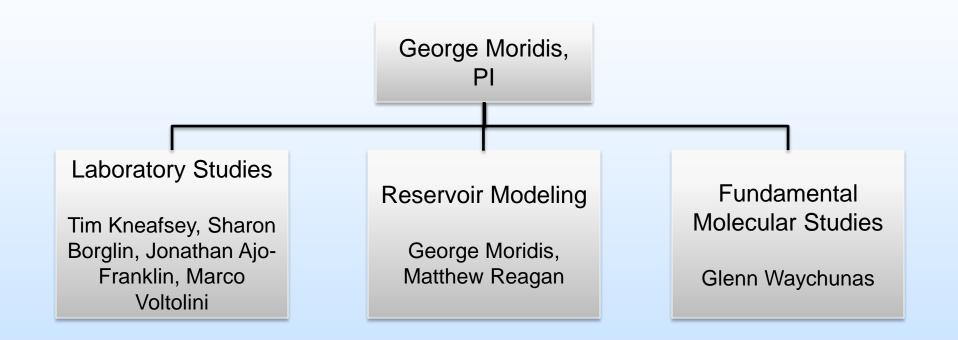
Future Activities– Phase II

- Continuation of simulation studies
 - Completion of sensitivity studies
 - Inclusion of more complex fractured systems
 - Assessment of optimal combinations of methods
 - Translation of results of upscaling studies (lab, MFD) into numerical simulator (completion of code development)
 - Updating effects of gas dissolution on gas viscosity and critical oil saturation (based on the lab studies)
 - Studies involving multi-component oils (Bakken or Eagle Ford analogs)
- Transport and geomechanical fate of proppants (new task!)
 Coordination with laboratory and visualization tasks

Synergy Opportunities

- Phase II objectives include collaboration goals with other NETL-funded work
- Clear synergies are apparent in approaches, measurements, and analysis of data among similar project themes
- Comparisons of results obtained using the various approaches builds confidence in the results and the program

Appendix


Gantt Chart

Budget Period		#1			#2	
Quarter	Q1	Q2	Q3	Q4	Q5	Q6
Task 1: Project Management and Planning	X					
Task 2: Definition of metrics and methodology						
for screening production strategies	X					
Task 3: Evaluation of enhanced liquids						
recovery using displacement processes			X			
Task 4: Evaluation of enhanced liquids						
recovery by means of viscosity reduction			X			
Task 5: Multi-scale laboratory studies of						
system interactions						X
Task 6: Molecular simulation analysis of						
system interactions					Х	
Task 7: Evaluation of enhanced liquids						
recovery by means of increased reservoir						
stimulation, well design and well operation						
scheduling						X
Task 8: Evaluation of combination methods						
and of new strategies						X

Phase I completed. The budget is exhausted at this time--effort much more demanding than expected. Phase II commencing soon.

Organization Chart

